

Emerging technologies and precaution

Ted Schettler MD, MPH

Baltimore MD June, 2006

Session outline

- Introduction, concerns, and questions
- Jen Sass—nanotechnology
- Doreen Stabinsky--biotechnology
- General discussion

The context for emerging technologies

• "Modern technology has introduced actions of such novel scale, objects, and consequences that the framework of former ethics can no longer contain them"

-Hans Jonas; The Imperative of Responsibility: In Search of An Ethics for the Technological Age (1978)

Sources of tension in technological development

- Human creativity, curiosity, and the distribution of risks and benefits
- Cleverness vs. wisdom
- Competing world views, ethics, and values
- Individual rights vs. the public good
- Change vs. the status quo
- Differing views on dealing with uncertainty

Kinds of uncertainty

- Statistical
- Model
- Fundamental
- Manufactured

Statistical uncertainty

• Results from not knowing the value of some variable at a particular point in space or time, but knowing, or being able to determine, the probability of a given value

Easiest to reduce or quantify

Model uncertainty

- Results from not fully understanding the relationships between variables in a system
- May know that a particular outcome is possible, but probability of that outcome is difficult to predict; may be indeterminate.

Fundamental uncertainty

- Increasing indeterminacy
- Partially results from ignorance
- Ignorance of ignorance a big problem (we don't know what we don't know)
- Fail to ask the right questions

Manufactured uncertainty

- Created to serve a particular purpose, often political, economic, or ideological
- Obfuscates
- May depend on lack of "proof"

Science and the precautionary principle

- Kinds of errors and error bias
 - Type 1: false positive
 - Type 2: false negative
 - Type 3: right answer; wrong question
- "Proof"—scientific, social, and political aspects
- "Causation" What do we need to consider in order to say that something "causes" something else?
- The limits of science

Error bias

- Scientific studies are usually interpreted to favor type 2 over type 1 errors
- This is because we have chosen not to conclude that evidence is "significantly positive" without it being "strong"
- ? Should the interpretation of "science" for establishing policies to protect public environmental health favor Type 1 errors?
- Who should decide?

Examples of emerging technologies or emerging concerns with existing technologies

- Biotechnology
- Nanotechnology
- Synthetic biology—completely novel life forms or synthesis of agents with potential for bioterrorism
- Expanded use of wireless communication
- Pharmaceuticals and personal care products in the environment. (PPCPs)
- Novel persistent chemical compounds
- Endocrine disruption—low dose effects; "new" toxicology

Questions to keep in mind

- What are characteristics of emerging technologies that should be explored?
- Are there principles or questions that should apply to all emerging technologies?
- Do we have a DUTY to consider consequences? If so, based on what?
- What have we learned from other technologies?
- What should trigger concerns? Precautionary action?
- Is it possible to say "yes" to new technologies?

Characteristics of concern—examples

- self replication
- mobility
- toxicity
- persistence
- (bio)accumulation
- scale—time, space (geography, widespread use)

Other considerations

- What are "we"/"you" trying to accomplish?
- Does goal setting have a role? Who decides? How do we deal with competing goals?
- Distribution of risks and benefits
- Alternatives

Two points of intervention

Regulation

- Often too late. We tend to regulate after discovering that something is a problem. E.g., chemicals, air and water pollutants, traffic control
- Can regulators realistically intervene before this? E.g,
 drug safety testing

Research

– A public interest research agenda: as a partial substitute for regulation?, to guide funding? what else?

Places to intervene in a system: Donella Meadows

- 9. Numbers (subsidies, taxes, regulatory standards).
- 8. Material stocks and flows.
- 7. Regulating negative feedback loops.
- 6. Driving positive feedback loops.
- 5. Information flows.
- 4. The rules of the system (incentives, punishment, constraints).
- 3. The power of self-organization. (change, evolution)
- 2. The goals of the system.
- 1. The mindset or paradigm out of which the goals, rules, feedback structure arise.

Does precaution always mean saying "no"?

- Saying "yes" to new technologies
 - Monitoring (monitoring can sometimes identify new problems with old technologies—e.g. PPCPs)
 - Performance bonds
 - Pilot at a scale "safe to fail"
 - Favor technologies that emerge from a research agenda based on the public good/interest
 - Other?

"Unrecognized risks are still risks; uncertain risks are still risks; and denied risks are still risks."

-- John Cairns, Jr.

Distinguished Professor of Environmental Biology Emeritus Virginia Polytechnic Institute and State University